Processing math: 100%

Статья

Тепломассообмен и физическая газодинамика
1995. Т. 33. № 3. С. 422–429
Лапин Ю.В., Поспелов В.А.
Турбулентный пограничный слой на плоской пластине
Аннотация
В рамках традиционной двухслойной клаузеровской схемы турбулентного пограничного слоя проведен анализ четырех алгебраических моделей, базирующихся на использовании формулы Прандтля пути смешения с демпфирующим множителем Лойцянского во внутренней области и различных соотношениях для турбулентной вязкости во внешней области. На основе анализа сделан вывод о том, что так называемая проблема "малых" чисел Рейнольдса есть следствие неуниверсальности использованных во внешней области масштабов. Показано, что универсальными масштабами внешней области являются динамическая скорость v и толщина вытеснения пограничного слоя δ. Из четырех рассмотренных соотношений для турбулентной вязкости во внешней области, основанных на использовании различных линейных и скоростных масштабов, лишь соотношение νt=Kvδ (K=const=0.4), названное формулой Клаузера-3, обладает свойством универсальности (независимости от числа Рейнольдса) во всем рассматриваемом диапазоне чисел Рейнольдса: 320<Re=Uδ/ν2×104 (U – скорость на внешней границе пограничного слоя, δ – толщина потери импульса, ν – кинематическая вязкость). Для остальных трех моделей предложены аппроксимации, учитывающие зависимость эмпирических "констант" от числа Рейнольдса. Проведен анализ структуры пограничного слоя, в том числе ее особенностей в области малых чисел Рейнольдса. Показано, что при числах Re>103 толщина внутренней области равна толщине вытеснения пограничного слоя.

УДК: 532.526
WoS: A1995RJ79000014
Ссылка на статью:
Лапин Ю.В., Поспелов В.А. Турбулентный пограничный слой на плоской пластине, ТВТ, 1995. Т. 33. № 3. С. 422

High Temp. 1995, v.33, №3, pp. 421-428