Article

Thermophysical Properties of Materials
2019. V. 57. № 6. P. 870–877
Nakhaei M., Ebrahimzadeh M., Padam M., Bahari A.
Synthesis and investigation of $\rm Al/Sn/La_2\rm O_3$ nanocomposite for gate dielectric applications
Annotation
In this research, TGA technique was used for determining thermal and gravimetrical stability of $\rm Al/Sn/La_2\rm O_3$ nanostructures prepared by sol-gel and spin-coating methods. Structural properties and surface morphology of the films were investigated by different analysis methods. Energy dispersive X-ray spectroscopy and a map were used to make a quantitative chemical analysis of unknown materials. Electrical properties of the samples were measured by metal-dielectric-semiconductor through capacitance–voltage and current rate–voltage. The conduction mechanism in the electrical field below $0.12$ MV/cm and in the temperature range of $335$ K $< T < 420$ K was found to be ohmic emission. A model of thermal excitation is proposed to explain the mechanism of ohmic conduction current. The highest value of dielectric constant $(k)$ was $\sim32$ at $T_1 = 200^{\circ}$C with almost amorphous structure. The results showed that at $T_1 = 200^{\circ}$C the $\rm Al/Sn/La_2\rm O_3$ nanostructure has lower leakage current rate and higher capacitance than those for other samples because of almost amorphous structure.
Article reference:
Nakhaei M., Ebrahimzadeh M., Padam M., Bahari A. Synthesis and investigation of $\rm Al/Sn/La_2\rm O_3$ nanocomposite for gate dielectric applications, High Temp., 2019. V. 57. № 6. P. 870